
 International Journal of Advanced and Applied Sciences, 5(5) 2018, Pages: 40-42  
 

 
 

 
 

Contents lists available at Science-Gate  

International Journal of Advanced and Applied Sciences 
Journal homepage: http://www.science-gate.com/IJAAS.html 

 

 

40 

 

Adaptive-delay based reconfigurable asynchronous pipeline 
 

Adnan Ghafoor 1, *, Arbab A. Khan 2 
 
1Department of Electrical Engineering, International Islamic University, Islamabad, Pakistan  
2Department of Electrical Engineering, Capital University of Science and Technology, Islamabad, Pakistan 
 

A R T I C L E  I N F O   A B S T R A C T  

Article history: 
Received 27 November 2017 
Received in revised form 
29 February 2018 
Accepted 3 March 2018 

This paper presents the asynchronous pipeline model implementable on 
FPGA platforms. The proposed event-controlled register acts as true adaptive 
delay element which adaptively prolongs the process of latching of data to 
store only the valid results, unlike other asynchronous approaches. Bundle 
data strategy with two-phase handshake protocol is used. In order to ensure 
the validity of the proposed pipeline, a fourth-order FIR filter was 
implemented on Xc7a100t-1csg324 FPGA. It was observed that the 
asynchronous pipeline implemented using auto place and route tools, adapts 
the delays of the data path and exhibits smooth functionality, with 
throughput supremacy over its synchronous counterpart. 
 

Keywords: 
Asynchronous  
Adaptive delay 
Pipeline  
FPGA 

© 2018 The Authors. Published by IASE. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

 

1. Introduction 

*Escalation in clock skews due to down-scaling of 
technology compels the researchers to reconsider 
asynchronous design methodology (Choy et al., 
2001). In asynchronous systems, subsystems work 
at their own pace using their local clock and 
synchronization among them is achieved by using 
either two-phase or four-phase handshake protocols 
(Spars and Furber, 2002). Handshake protocols are 
implemented using Request (Req) and Acknowledge 
(Ack) signals (Peeters and van Berkel, 1995). These 
signals form the control path which must match the 
speed of data being processed in data path (Beerel, 
2002). 

Data processing by multilayered logic blocks 
consume more time than control signals. Data may 
reach the subsystem earlier than Req. However, 
arrival of Req earlier than data may be catastrophic 
for the whole system. An earlier approach to solve 
the problem was to insert fixed delays in the Req line 
using delay pads which usually contain even number 
of inverters. Insertion of fixed delays is equivalent to 
slowing down the synchronizing clock of the 
synchronous systems; this excludes those from the 
domain of systems with adaptive delay.  

The auto optimization tools during 
implementation remove the consecutive inversions; 
hence the delay pads in control path. Special 
parameters need to be passed to the CAD tools in 

                                                 
* Corresponding Author.  
Email Address: adnan.phdee39@iiu.edu.pk (A. Ghafoor) 

https://doi.org/10.21833/ijaas.2018.05.005 
2313-626X/© 2018 The Authors. Published by IASE.  
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

order to preserve them in a design. Insertion of 
predefined delays does not guarantee the smooth 
functionality after the implementation of a design. 
This is because various place-and-route (PAR) tools 
during the routing process do not preserve the ratios 
between the control path and various fork legs of 
data path. The interconnect delays may become 
more significant than data delays and thus cannot be 
ignored (Hauck, 1995).  

2. Background  

Asynchronous systems exist in full custom 
domain like ASICs and are rarely implemented in 
FPGAs due to hardness of speed matching between 
control and data paths. This is because conventional 
FPGAs and their CAD tools are made for synchronous 
designs. This lack of support makes it impractical to 
precisely model logic and wire delays before 
implementation. Unbundled data strategy, where 
dual wire channel represents single logic level 
(Peeters and van Berkel, 1995), caters to the routing 
problem; however, it impacts speed, power and 
resource utilization.  

High performance asynchronous pipelines 
including Micropipelines (Sutherland, 1989) and 
MOUSETRAP (Singh and Nowick, 2001) use 
predefined delays in their control path, whereas PSO 
pipelines (Williams, 1991) uses unbundled data 
strategy to cater to delays. Although a lot of quality 
work has already been presented in the literature for 
the implementation of asynchronous systems, the 
adaptive delay based implementation caught 
attention of the few. Completion detection, as an 
alternate approach towards adaptive delay, on 
bundle data through current sensing was originally 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:adnan.phdee39@iiu.edu.pk
https://doi.org/10.21833/ijaas.2018.05.005
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2018.05.005&amp;domain=pdf&amp


Adnan Ghafoor, Arbab A. Khan/International Journal of Advanced and Applied Sciences, 5(5) 2018, Pages: 40-42 

41 
 

proposed by (Izosimov et al., 1990). The idea was 
implemented by (Dean et al., 1994) and further 
carried out by (Lampinen and Vainio, 2001; 
Bashirullah, 2006; Nigussie et al., 2011). Current 
sensing circuits, however, neither exists nor can be 
designed in FPGAs. The problem leads to the need of 
a logical Adaptive Delay Element (ADE) which 
dynamically adapts the delays of a design and the 
underlying technology.  

Here, we propose an ADE that generates the 
control signals in correlation with the processing 
and flow of data, with adaptive delay needed at the 
instant that not only protects the system from such 
catastrophes but also improves the throughput of 
the system. The core idea behind the ADE is to wait 
for the stable result from the logic processing 
element after reception of the Req signal. The ADE 
controls the inter-stage latch which is the 
destination of partial results in a pipeline. The 
combination of ADE and inter-stage latch is named 
here as Event Controlled Register (ECR). 

3. Event controlled register 

Fig. 1 shows the schematic of ECR. The active- 
high Enable signal to the N-bit latch makes it 
transparent to data with a delay time of one latch, 
while new data keeps latching in it, the comparator 
keeps comparing it. The comparator’s output goes 
high only when there are no more transitions in the 
data. The high output of the comparator guarantees 
that the result becomes stable and valid thus can be 
stored in the N-bit latch. When the valid result is 
present in ECR, the logical AND of the Enable signal 
and the output of the comparator goes to the 1-bit D-
Latch. This matches the state of its output as Ack to 
the new state of the Req. The new value of Ack 
reaches as Ack to the Req initiating stage, that its 
result has been saved. The Ack also reaches as Req 
signal to the next stage of the pipeline asking it to 
store new result from its logic processing block. 

  

 
Fig. 1: Event controlled register 

 

Clock (Clk) signal is also derived by inverting the 
Enable line, it meets the setup and hold time of 
sequential elements. Although the ECR does not 
contain any synchronous element, it generates clock 
signal to drive any sequential element in the design if 
needed. 

4. ECR based asynchronous pipeline 

Fig. 2 shows the model of a three-stage 
asynchronous pipeline using ADE, wherein the ECR 
serves as inter-stage latch. Delay pads in the control 
path are not required in this pipeline design because 

of the adaptive delay nature of the ECR that also 
enables the PAR tools to implement design in their 
way. 

 

 
Fig. 2: ECR based asynchronous pipeline 

 
Starting with the initial state when both Req and 

Ack are at same logic state, let it be logical ‘low’, in 
turn the output of all the XNOR gates will be ‘high’ 
and thus all the ECRs of the pipeline will be enabled. 
After giving new data at the input of the first ECR 
and flipping the state of its Req to ‘high’, the output 
of the comparator will remain ‘low’ till transitions in 
the data at the input of its ECR vanish and valid 
result is present in it. Then the ‘high’ output of the 
comparator will save the new value of the Req in its 
1-bit latch, which is opposite to the value of Ack of 
the next stage, making the output of the first XNOR 
‘low’. This latches the data in its ECR so that the 
second stage may process it. After the processing 
when input and the output busses of the second 
stage ECR match, its 1-bit latch will flip to ‘high’ that 
will disable the ECR of the second stage and will also 
enable the ECRs of the first stage allowing it to take 
new data at the input of the pipeline if there is a Req. 
This way even and odd number stages work 
alternately. The process continues till the processed 
data emerges from the last stage. This way a single 
data presented to the pipeline will flip the phase of 
its all 1-bit latches, while the processing of second 
data will restore it. This signaling protocol seems 
matching to that of MOUSETRAP (Singh and Nowick, 
2001) pipeline, but the major distinction is that 
MOUSETRAP uses fixed delay pads, thus it is not in 
the domain of adaptive delay architecture, whereas 
the ECR based pipeline has adaptive delay. Further it 
is implementable easily on FPGA platforms without 
disabling its optimizing tools. 

The pipeline can communicate with the other 
asynchronous modules through its handshake 
signals. In order to make it a standalone system, Req 
signal of the first stage and Ack to the last stage are 
generated from inside logic. Inverted Ack from 
second stage goes as Req to the first stage and logical 
XNOR of Req and Ack of the last stage forms the 
Enable signal of that stage, however, the rest of the 
logic remains the same. 

5. FIR filter 

In order to check the validity of the presented 
concepts, the fourth order Gaussian low pass filter 
with 8-bit unsigned coefficient is designed as shown 
in Fig. 3. An 8-bit counter as sample generator feeds 



Adnan Ghafoor, Arbab A. Khan/International Journal of Advanced and Applied Sciences, 5(5) 2018, Pages: 40-42 

42 
 

samples to the filter. Fig. 4 shows the post layout 
simulation of FIR filter that confirms the smooth 
functionality of the design and an average processing 
of data in less than 3 ns. 

 

 
Fig. 3: FIR filter using ECR based pipeline 

 

 
Fig. 4: Post layout simulation of FIR filter 

6. Results and discussion  

The design was implemented on Xc7a100t-
1csg324 FPGA device using ISE 14.7 with auto PAR 
tools. No predefined delays were inserted in the Req 
line. Timing constraints were specified to optimize 
the routing process. Optimization goal was set to 
speed and effort level to high. XPower tool was used 
to estimate power consumption of the design based 
on the switching rate activity file obtained from the 
ISim tool. Both the synchronous and asynchronous 
designs were implemented using same parameters. 
The power and speed comparisons of both the 
designs are shown in Table 1. Speed improvement of 
asynchronous design is due to data dependent 
delays by completion detection circuitry (Beerel, 
2002). Asynchronous implementation consumed 
more power than its synchronous counterpart. This 
difference is due to extra logic gates that were 
packed in logic slices and more switching activity 
due to the high processing speed. 

 
Table 1: Speed and power comparison of synchronous and 

asynchronous implementations 

FPGA Family 
Design 

Methodology 
Cycle Time 

(ns) 
Power 
(mW) 

Xc7a100t-
1csg324 

Synchronous 3.1 84 
Asynchronous 2.9 93 

7. Conclusion 

This paper demonstrates the concept of delay in 
the implementation of asynchronous pipeline over 

reconfigurable devices using auto PAR tools. Worst 
case delay in Req line is replaced with ADE in 
combination with inter-stage latch named as ECR. 
The ECR prolongs the latching process till the input 
data becomes stable. ECR based designs work on 
data dependent delays in contrast to predefined 
worst delays, therefore, they exhibit supremacy in 
speed over the synchronous and asynchronous 
designs with predefined fixed delays in addition to 
being technology independence. 

References  

Bashirullah R (2006). Reduced delay sensitivity to process 
induced variability in current sensing interconnects. 
Electronics Letters, 42(9): 531-532.  

Beerel PA (2002). Asynchronous circuits: An increasingly practical 
design solution. In the International Symposium on Quality 
Electronic Design, IEEE, San Jose, CA, USA: 367-372. 
https://doi.org/10.1109/ISQED.2002.996774  

Choy CS, Butas J, Povazanic J, and Chan CF (2001). A new control 
circuit for asynchronous micropipelines. IEEE Transactions on 
Computers, 50(9): 992-997.  

Dean ME, Dill DL, and Horowitz M (1994). Self-timed logic using 
current-sensing completion detection (CSCD). In: Meng TH 
and Malik S (Eds.), Asynchronous circuit design for VLSI signal 
processing: 7-16. Springer, Boston, USA. 

Hauck S (1995). Asynchronous design methodologies: An 
overview. Proceedings of the IEEE, 83(1): 69-93.  

Izosimov OA, Shagurin II, and Tsylyov VV (1990). Physical 
approach to CMOS module self-timing. Electronics Letters, 
26(22): 835-836.  

Lampinen H and Vainio O (2001). Dynamically biased current 
sensor for current-sensing completion detection. In the IEEE 
International Symposium on Circuits and Systems, IEEE, 
Sydney, NSW, Australia, 4: 394-397. https://doi.org/10.1109/ 
ISCAS.2001.922256  

Nigussie E, Tuuna S, Plosila J, Liljeberg P, Isoaho J, and Tenhunen 
H (2011). Boosting performance of self-timed delay-
insensitive bit parallel on-chip interconnects. IET Circuits, 
Devices and Systems, 5(6): 505-517.  

Peeters A and van Berkel K (1995). Single-rail handshake circuits. 
In the 2nd Working Conference on Asynchronous Design 
Methodologies, IEEE, London, UK: 53-62. https://doi.org/ 
10.1109/WCADM.1995.514642  

Singh M and Nowick SM (2001). MOUSETRAP: Ultra-high-speed 
transition-signaling asynchronous pipelines. In the 
International Conference on Computer Design, IEEE, Austin, 
USA: 9-17. https://doi.org/10.1109/ICCD.2001.954997  

Spars J and Furber S (2002). Principles asynchronous circuit 
design. Kluwer Academic Publishers, Norwell, USA. 

Sutherland IE (1989). Micropipelines. Communications of the 
ACM, 32(6): 720-738.  

Williams TE (1991). Self-timed rings and their application to 
division. Ph.D. Dissertation, Stanford University, Stanford, 
USA. 

 

https://doi.org/10.1109/ISQED.2002.996774
https://doi.org/10.1109/ICCD.2001.954997

	Adaptive-delay based reconfigurable asynchronous pipeline
	1. Introduction
	2. Background
	3. Event controlled register
	4. ECR based asynchronous pipeline
	5. FIR filter
	6. Results and discussion
	7. Conclusion
	References


